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Abstract

A model is presented for coercivity in polycrystalline exchange-bias bilayers.

It includes two contributions for their enhanced coercivity, inhomogeneous re-

versal and irreversible transitions in the antiferromagnetic grains. The model

can be characterized in terms of a small number of dimensionless parameters,

and its behavior has been determined through simulations of magnetic rever-

sal for a range of values of these parameters. In these simulations, the first

contribution to the coercivity arises from energy losses in the ferromagnet due

to irreversible transitions over small, local energy barriers in the ferromagnetic

film due to the inhomogeneous coupling to the antiferromagnet. This inhomo-

geneous reversal contributes to the coercivity at all temperatures. The second

contribution to the coercivity arises from energy losses in the antiferromagnet

due to irreversible transitions of the antiferromagnetic order in the grains. In

the present model, the antiferromagnetic order only becomes unstable at non-

zero temperature, so that this contribution to the coercivity only occurs at

non-zero temperatures. In addition to the coercivity, the computed hysteresis

loops are found to be asymmetric, and the loop shift is shown to differ from

the grain-averaged unidirectional anisotropy.
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I. INTRODUCTION

An exchange-bias bilayer consists of a ferromagnetic thin film coupled to an antiferro-

magnetic film. The most commonly observed changes in the properties of the ferromagnetic

thin film as a result of this coupling are a shift in its hysteresis loop and an increase its

coercivity, or width of its hysteresis loop.1,2 Several models3–6 can explain the size of the

loop shift, but the increase in the coercivity is less well understood.

There are several possible mechanisms which have been used to explain the increased

coercivity found in exchange bias systems. One mechanism for coercivity in these systems

derives from instabilities in the antiferromagnet.3,7,8 If reversing the ferromagnetic magneti-

zation irreversibly switches the antiferromagnetic order in parts of the system, work is done.

This work must contribute to the area and hence width of the hysteresis loop. Another

mechanism for coercivity is inhomogeneous magnetization reversal. If the sample has inho-

mogeneous properties, these can lead to a coercivity through mechanisms like domain-wall

pinning.9,10 We consider both these mechanisms in this paper.

The most commonly invoked mechanism for coercivity is reversal through coherent ro-

tation. In coherent rotation, the ferromagnetic magnetization is assumed to be spatially

uniform during reversal. The presence of an anisotropy in the ferromagnetic film gives bar-

riers to rotation that are irreversibly overcome during reversal. Since this model has only

one degree of freedom, the direction of the ferromagnetic magnetization, it is frequently used

to fit experimental results. In several theoretical models,11,12 perpendicular coupling13 at the

interface gives the ferromagnet the effective uniaxial anisotropy that causes the coercivity.

There are several arguments against coherent rotation with a uniaxial anisotropy as

the origin of the enhanced coercivity in these systems. One argument is based on the

measurement of hysteresis in samples prepared with ferromagnetic layer that continuously

increases in thickness, i.e. a wedge-shaped ferromagnetic layer.14,15 Since the loop shift

is found to vary as the inverse of the ferromagnetic layer thickness, different parts of the

sample reverse at different applied fields. Thus, between the reversed and unreversed parts
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of the sample, there is a domain wall that moves across the sample as the field is varied.

If the sample were spatially uniform, as is assumed for coherent rotation, the domain wall

would be free to move to its minimum energy site. In this case, the domain wall would sit

exactly at the place on the film where the shift field is equal to the external field. It would

pass through the same point at the same field for both directions of the field sweep and

there would be no coercivity. However, measurements show that the coercivity is locally the

same at each thickness as it is in uniform films of the same thickness that do not have a

pre-existing domain wall. Thus, the coercivity cannot be simply due to a uniform uniaxial

anisotropy and coherent rotation.

This conclusion is not restricted to these wedge samples. There is experimental evi-

dence for the presence of domain walls in many exchange-bias systems. Images obtained

by magnetic force microscopy,16,17 magneto-optical indicator film imaging,18,19 and Fresnel

imaging20 show the presence of domains and domain walls during reversal. Furthermore,

images of 360◦ domain walls in exchange-biased films21 are evidence that the magnetization

rotates in different directions in different parts of the film.

It is also possible to test whether the uniaxial anisotropy is the origin of the coercivity by

measuring the anisotropy directly in experiments like ferromagnetic resonance,22–24 Brillouin

light scattering,25,26 and rotational torque.27–31 The uniaxial anisotropy that is measured in

these systems is frequently not large enough to account for the measured coercivity.

In this paper, we compute the loop shift and coercivity for an extension of a model32,33

that we previously used to describe measurements in a saturating field, like ferromagnetic

resonance and rotational torque. This model includes both instabilities in the antiferro-

magnet and inhomogeneities as mechanisms for increased coercivity. In Sec. II we briefly

describe the model and its extensions. In Sec. III we give the results of our calculations.
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II. MODEL

In previous papers,32,33 we describe a model for polycrystalline exchange-bias systems,

and calculate properties of the systems in applied magnetic fields that are large enough to

saturate the ferromagnetic magnetization. A brief summary of the model follows. In this

model, we assume that the grains of the antiferromagnet are independent (not coupled to

each other), and each is coupled only to the ferromagnetic layer. Each antiferromagnetic

grain has uniaxial anisotropy with easy-axis directions randomly distributed in three di-

mensions (uniformly distributed over the surface of a sphere). The coupling between the

antiferromagnetic grains and the ferromagnetic film is assumed to be distributed according

to a statistical distribution of the fraction of each sublattice at the interface. The net in-

terfacial coupling varies from grain to grain due to the statistical distribution of the two

sublattices at the interface of each grain. The mean interfacial coupling is the average over

all grains of the absolute value of the strength of the coupling. We do not include any

perpendicular or spin-flop coupling.

In this model, the zero-temperature properties are described by two parameters, the

domain-wall energy in the antiferromagnet, σ0, and the dimensionless ratio of the mean

interfacial coupling to the domain wall energy

r0 =
2Jint

σ0a2

√
2

πN
, (1)

where Jint is the bare coupling across the interface, N is the number of spins at the interface

of each grain, and Na2 is the interface area of the grains. See Table I for the definitions of

all the dimensionless parameters used in this model.

There are two sources of temperature dependence in the model. First, we assume that the

domain-wall energy in the antiferromagnet depends on temperature as σ = σ0(1−T/TN)5/6,

where TN is the Néel temperature. Second, we assume that the finite-size antiferromag-

netic grains behave analogously to superparamagnets as assumed earlier by Fulcomer and

Charap.7 These authors treated a model in which the barrier to reversal is determined by
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a volume anisotropy. We assume that it is determined by a domain-wall energy. For very

small grains, the former is likely to be a good approximation, and for larger grains where

the reversal mechanism is non-uniform the latter will be a better approximation. None of

the results we discuss below depend qualitatively on which model for reversal is chosen.

We assume that each antiferromagnetic grain exists in one of two states. Far from the

interface with the ferromagnet, the states differ only in the direction of the sublattice mag-

netizations along the easy axis. In the absence of coupling to the ferromagnet, the two states

are degenerate, but the coupling to the ferromagnet winds up partial domain walls3,32,34,35

in the antiferromagnet and lifts the degeneracy. As a function of the ferromagnetic magne-

tization direction, M̂FM, the energies of the two states are

E(±) =
Na2σ

2

(
1−

[
1 + 2rM̂FM · (±û) + r2

]1/2)
, (2)

where û is the easy axis in the antiferromagnet grain, and r is the ratio of the net interfacial

coupling for that grain to the domain-wall energy times the area of the grain. We assume

that the energy barrier from the state that is higher in energy to the state that is lower in

energy is given by the change in energy plus a domain-wall energy times the interface area

of the grain. The barrier for the transition from the low state to the high state is just a

domain wall energy times the area.36

With this model for the barriers between the two configurations, the two parameters that

determine the temperature dependence in this model are the Néel temperature, TN and the

dimensionless ratio of the zero-temperature domain-wall energy to the Néel temperature

b =
Na2σ0

kTN
. (3)

This parameter characterizes the ratio of the typical size of the reversal barriers to typical

thermal energies.

For properties of the system when the ferromagnetic magnetization is saturated, as

treated in previous papers,32,33 the parameters described above are the only parameters

of the model. However, in the present paper, in which we are interested in non-uniform
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magnetization reversal, both the spatial distribution of the grains and the exchange stiffness

in the ferromagnetic film matter. For simplicity we assume that the antiferromagnetic grains

are uniformly spaced on a square grid. We also assume that the magnetization in the ferro-

magnetic film is uniform throughout the thickness of the film. By definition, this assumption

is correct when the ferromagnetic magnetization is saturated. Neutron scattering37 shows

that it is correct more generally, at least for some samples. On the other hand, this assump-

tion is likely to be inappropriate for systems like Fe/FeF2
38–40, in which it appears that

domain walls parallel to the interface do play an important role.41

The new parameter of the model, necessary to compute coercivity, describes the extent

to which inhomogeneities are important. It is defined in terms of averaged quantities as the

ratio of the strength of the coupling at the interface to the intergranular coupling in the

ferromagnetic film

s =
Na2σex(0)

At
, (4)

where A is the exchange stiffness constant in the ferromagnet, t is the thickness of the

ferromagnet, and σex(0) is the size of the unidirectional anisotropy at T = 0. From earlier

work,32,33 the zero-temperature unidirectional anisotropy is given by

σex(0) =
σ0

2

∞∫
0

drΦ(r, r0)F1(r), (5)

where

F1(r) =



r
2

(
1− r2

5

)
r < 1

1
2

(
1− 1

5r2

)
r > 1

, (6)

and

Φ(r, r0) =
2

πr0
exp

(
−

r2

πr02

)
, (7)

is the distribution of interfacial coupling energies.

We compute hysteresis loops for this model by integrating the damped equations of mo-

tion for the ferromagnetic layer. The equations are derived from equations of motion in the
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Landau-Lifshitz form by dropping the precessional term. Then, we restrict the ferromag-

netic magnetization to lie in the plane. Finally, we ignore the thermal noise associated with

the damping through the fluctuation-dissipation theorem. While these approximations give

rise to additional uncertainly in the results, we believe the resulting changes are minor, the

approximations allow us to focus on effects intrinsic to the coupling to the antiferromagnet,

and they significantly speed up the calculation, allowing the systematic exploration of phase

space given below. Using this procedure, the time scale of damped motion can be deter-

mined from the dimensionless damping parameter α and the gyromagnetic ratio, g. The

damped equation of motion is then

φ̇i,j = −λ′
∂ε′i,j
∂φi,j

, (8)

where

εi,j = −
1

2

∑
i′,j′∈n.n.

cos(φi,j − φi′,j′)

−
µ0MSHNa2

A
cos(φi,j − φH)

−
σNa2

2At

√
1± 2ri,j sin θi,j cos(φi,j − ψi,j) + r2i,j (9)

is the dimensionless energy (scaled by At) associated with the ferromagnetic grain of volume

Na2t located at site (i, j). The first term is the exchange coupling with nearest-neighbor

sites, the second term is the interaction with the external field, and the last term is the

coupling to the antiferromagnetic grain at that site. The orientation of the easy axis in the

antiferromagnetic grain is described by the polar angle θi,j and the azimuthal angle ψi,j.

The interfacial coupling compared to the domain-wall energy is given by ri,j. The coupling

energy depends on the state of the antiferromagnet, through the ± sign. The time scale is

determined by the rate

λ′ =
A

Na2
α

1 + α2
gµB

h̄Ms

≈ 1.5× 108 s−1, (10)

based on the values
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A = 1.3× 10−11 J/m

Na2 = 4× 10−16 m2

α = 0.02

g = 2

Ms = 8× 105 A/m, (11)

which are representative values of materials parameters for Ni80Fe20.

In Section III, we compute hysteresis loops in two different ways. At zero temperature,

since there are no thermally activated processes, it is possible to define a meaningful quasi-

static limit. For zero-temperature computations, we use a combination of conjugate-gradient

minimization and direct integration of the damped equation of motion to compute the quasi-

static hysteresis loops. The field is varied in small discrete steps. For each new field, we

use conjugate-gradient minimization to minimize the energy of the configuration. If the

change in configuration is large enough, indicating that some part of the system has changed

discontinuously, we redo the energy minimization using direct integration of Eq. (8). This

last step ensures that the system does not go over any energy barriers inappropriately due

to an overly large step in the conjugate gradient procedure. For both simplicity in the

model and computational speed, we ignore the contribution of the precessional motion to

overcoming energy barriers.

At finite temperature, we allow for thermal transitions between the two states of each

of the antiferromagnetic grains. As described previously,33 for a given configuration of the

system, our model gives a barrier, EBi,j for reversal for each of the antiferromagnetic grains.

Together with the prefactor ν, the barrier height and the temperature T give a time scale for

thermal excitation over the barriers. Since the thermal transitions in the antiferromagnetic

grains and the equation of motion of the ferromagnet, Eq. (8), each have a definite time

scale, it is straightforward to combine them. We vary the field in discrete steps as before, but

directly integrate Eq. (8) for a fixed-number of time steps with fixed length, ∆t. After each

time step, we allow for thermal transitions between states in the antiferromagnetic grains.
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For each grain, we compute the probability that the grain has made a transition over the

barrier during the preceding time step

P transij (∆t) = 1− exp
[
−ν∆t exp

(
−EBij/kBT

)]
. (12)

We accept the transition when the probability is larger than a random number chosen be-

tween zero and one. When the probability of a transition becomes appreciable, multiple

transitions between the two antiferromagnetic states become possible in each time inter-

val. In this case, the expression for the transition probability is modified so that the net

probability distribution of the two states tends to its equilibrium value.

For finite-temperature calculations, the time scales of these transitions set a time scale

for the hysteresis loop, and the quasi-static limit cannot be achieved. The hysteresis loops

have a definite field sweep rate associated with them. For sufficiently slow sweep rates, the

hysteresis loop changes very slowly with sweep rate.

III. RESULTS

The model described in Sec. II contains two mechanisms that give coercivity. The first,

which contributes at all temperatures, is due to inhomogeneities in the system. For this

mechanism, the energy losses come from irreversible processes in the ferromagnetic film. The

second, which contributes only at non-zero temperatures (in this model, all energy barriers

are greater than zero), is due to irreversible processes in the antiferromagnetic grains. This

mechanism for coercivity has been described previously.7,8 However, the contribution to the

coercivity from this mechanism is significantly reduced in the presence of inhomogeneities

as is discussed below.

A. Zero-temperature results

We illustrate the inhomogeneous mechanism for coercivity with a particular realization

of the model described in the previous section. The system consists of a 16 × 16 lattice
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with periodic boundary conditions. The biased state is prepared by choosing the state

of each antiferromagnetic grain with the lowest energy when the field is pointed in the

positive x direction. The variation of the easy-axis directions in the randomly oriented

antiferromagnetic grains gives rise to the inhomogeneity in this system. This inhomogeneity

is the only source of coercivity in this system. There is no anisotropy in the ferromagnetic

grains except the effective anisotropy induced by the coupling to the antiferromagnet. If the

ferromagnetic magnetization is constrained to be uniform over all the whole film, the only

effective anisotropy is unidirectional. There is no macroscopic uniaxial anisotropy to give

a barrier to reversal. In addition, there is no irreversibility in the antiferromagnetic grains

at zero temperature in this model, so there is no contribution to the coercivity from such

irreversibility.

Figure 1 shows the hysteresis loop calculated for this particular realization. Also il-

lustrated are the spin configurations of the ferromagnetic grains at four points along the

hysteresis loop. At high fields, the spins are all pointed in the positive x-direction. As the

field is reduced, the antiferromagnetic grains exert torques on the moments of the ferromag-

netic grains, rotating the spins toward the positive or negative y-direction, depending on

the local easy-axis orientation. This rotation is illustrated in Panel (a). Grains that rotate

toward the negative y-direction are shaded in gray, other grains rotate toward the positive

y-direction. The intergranular exchange coupling between the ferromagnetic grains is strong

enough that the moments must all rotate in the same direction on reversal. For the system

illustrated here, the moments all rotate counterclockwise through the positive y-direction

when going from positive fields to negative fields, as seen in Panel (b). Thus, the spins that

started rotating in the negative y-direction see a local barrier to reversal. As the field is

increased in the negative direction, the height of the barrier eventually goes to zero. When

it does, the local moments rotate suddenly through some finite angle and dissipate energy.

This energy loss is the origin of the hysteresis. It can be seen in the discrete jumps in the

hysteresis loop.

At large negative fields, seen in Panel (c), the spin configuration is very closely related
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to that in large positive fields, as seen in Panel (a). The moments are now are mostly in

the negative x direction, but the y-components are not reversed. It will be important below

that for reversal in increasing, Panel (b), and decreasing fields, Panel (d), the rotation of

the moments has the opposite sense. For this realization, the moments rotate through the

positive y-direction in both cases.

In the hysteresis loop in Fig. 1, the magnetization and fields are given in terms of scaled

variables. The magnetization is scaled by the saturation magnetization, and the field in

terms of the shift field expected from the zero temperature unidirectional anisotropy,

m =
M

MS

h =
Hµ0MSt

σex(0)
. (13)

Figure 1 illustrates that the loop shift can be different than what would be expected simply

from the unidirectional anisotropy and that the loop is generally asymmetric. If the unidi-

rectional anisotropy were uniform, it would behave like an applied field. When the hysteresis

loop is measured along the easy direction of this anisotropy, the loop is symmetric around

the shift field, h = −1. However, when the unidirectional anisotropy is not uniform, as it

is not in this model, the reversal process will be different for the two directions and the

shift field will be different than what would be expected from the effective unidirectional

anisotropy.

Non-uniform reversal and coherent rotation lead to different behavior. This difference in

illustrated in Fig. 2, which shows the angular dependence of the shift field and the coercive

field as a function of the angle at which the external field is applied relative to the easy

direction of the unidirectional anisotropy. Here, the systems are 128×128 lattices, still at

zero temperature. Panel (a) gives the results for coherent rotation with a uniaxial anisotropy,

and Panels (b) and (c) give results for realizations of the present model for two different

sets of parameters. The angular dependence is not very different from what is found for the

coherent rotation model. For the same ratio of the coercivity to loop shift at φH = 0, some

choices of parameters give non-zero coercivity over a greater angular range than is found
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for coherent rotation, but the difference can be subtle. For both coherent rotation and non-

uniform reversal, the angular variation is consistent with the experimental results of Xi and

White.42 However, as seen in the insets to each panel, the two models give hysteresis loops

that are very different for fields applied along the easy direction. For coherent rotation, the

whole system changes discontinuously from one orientation to the other at a single field,

giving a square hysteresis loop. For non-uniform reversal, the reversal consists of some

parts reversible rotation and other parts small jumps over a limited part of the sample. To

get a finite width hysteresis loop, there must be jumps with their associated irreversibility.

For non-uniform reversal, these jump occur in small parts of the system giving a rounded

appearing hysteresis loop. This loop shape is consistent with that found in the experiment

mentioned above.42

In panels (b) and (c) of Fig. 2, the system was prepared in its maximally biased state,

so that all the antiferromagnetic grains contribute to the bias. In panel (e), the antiferro-

magnetic grains are ordered completely randomly. In this model, there is no loop shift, but

there is a constant coercivity for all field angles, φH. This coercivity is approximately the

same as the easy direction coercivity for the completely biased sample. This similarity im-

plies that the bias is responsible for eliminating the coercivity at other angles. Apparently,

the bias gives a preferred direction for the rotation from one saturated state to the other,

and causes the rotation to be reversible, eliminating the coercivity. In panel (d), half of

the grains contribute to the bias and the other half are randomly ordered. For this model,

the coercivity does not go to zero away from the easy direction, but exhibits behavior very

similar to that found by Ambrose et al.43

The dependence of the coercivity and loop shift on the strength of the intergranular

coupling is shown in Fig. 3. For the range of parameters considered here, both the scaled

coercive field and loop shift appear to depend linearly on the ratio s, defined in Eq. (4),

of interfacial coupling to intergranular coupling. For each value of s, completely different

realizations of the 128×128 lattice were chosen. For two points, a set of 20 calculations

were done giving an estimate of the variation from realization to realization. The deviation
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of the calculated curves around linear behavior is apparently due to fluctuations from real-

ization to realization. Much smoother curves would result if the parameters describing the

antiferromagnetic grains were kept fixed as s was varied.

The simplest way to vary the intergranular coupling experimentally is to vary the thick-

ness of the ferromagnetic overlayer. The parameter s depends inversely on the thickness.

However, the scaling parameter for the field, Eq. (13) also depends linearly on the thickness.

Thus the inverse dependence of the coercivity shown in Fig. 3 translates into an unscaled

coercive field that decreases as one over the thickness squared, as shown in Fig. 4. This be-

havior is in contrast to the t
−3/2
FM behavior found in related calculations for a slightly different

model.9,10 The present model also predicts that the loop shift does not vary simply as in-

versely proportional to the thickness, but that there is a small correction that is proportional

to one over the thickness squared.

The coefficients of linear variations shown in Fig. 3 depend weakly and non-monotonically

on the other system parameter r0. For a given strength of coupling at the interface, i.e.

σex(0) constant, varying r0 effects the system in two ways. First, it affects the distribution

of r values. When r0 is much less than one, Φ(r, r0), contains only small values of r. For

small r the amplitude of the angular variation in Eq. (2) is proportional to r, so that the

distribution of coupling strengths is relatively broad. On the other hand, when r0 is much

greater than one, Φ(r, r0) contains predominantly large values of r. For large r the amplitude

of the angular variation in Eq. (2) is independent of r, so that the distribution of coupling

strengths is relatively narrow. Second, r0 affects the presence of higher harmonics in the

coupling at the interface. When r is either much smaller than one or much larger than one,

the angular dependence of the interfacial energy, Eq. (2), varies simply as the cosine of the

angle between the ferromagnetic magnetization direction and the easy axis. However, when

r is close to one, there are higher odd harmonics. The presence of these harmonics increases

the asymmetry between the hard and easy directions.

Figure 5 shows the convergence of the simulations with respect to size. There are two

issues. First, the system must be large enough that the periodic boundary conditions do not
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affect the results. The bottom panel of Fig. 5 shows that 32× 32 and 64× 64 lattices show

such size dependences, but the 128 × 128 lattices do not. The second issue is whether the

lattice is large enough to give an average value with one simulation. The top panel of Fig. 5

shows that the 128×128 lattices are not quite large enough. The variations from realization

to realization give the uncertainties shown in Fig. 3. The simulations described in Fig. 3 use

128×128 lattices, which are not quite large enough to be converged with respect to lattice

size. However, they were the largest size that was practical.

In the current model, each antiferromagnetic grain has a local unidirectional anisotropy.

The local unidirectional anisotropies, Eq. (2), have a distribution determined by the distri-

bution of r values in Eq. (7) and the distribution of polar angles of the easy axis directions.

The resulting distribution has a large narrow peak around zero, but there is a long tail

extending to relatively large values. A large lattice is required to sample the tails of the

distribution accurately. If the distribution were more uniform, smaller lattices would be

adequate. For example, if the value if r is fixed and not distributed, then 64×64 lattices

are adequate. Alternatively, models in which the easy axis directions are restricted to be

in-plane would require smaller lattices.10

B. Finite temperature results

For simulations at finite temperature the rate at which the magnetic field is changed

becomes important. If it were feasible to reverse the magnetization slowly enough that the

system were in equilibrium the whole time, there would be no hysteresis. However, the time

scale for this is unrealistically long in all but trivial cases. When there is a loop shift, some

of the antiferromagnetic grains are stable on the time scale of the measurement. Which

grains are stable depends on the time scale of the measurement and the temperature. The

variation of the temperature dependence as a function of sweep rate is illustrated in Fig. 6.

Using the parameters chosen in Eq. (10), the simulations illustrated in Fig. 6 are done

by varying the magnetic field between 48000 A/m (600 Oe) and -48000 A/m in 2× 10−4 s
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to 16 × 10−4 s. Ideally, slower sweep rates would be desirable, but were not feasible. The

simulation with the slowest sweep rate integrated 2.4× 106 time steps for each of 128×128

spins at each of ten temperatures. At low temperatures, the coercivity depends strongly on

the sweep rate. At zero temperature, where it is possible to compute a quasi-static limit, the

constant sweep-rate results approach, but do not reach, the quasi-static limit. The loop shift

does not depend strongly on the sweep rate except that the blocking temperature increases

slowly as the sweep rate is increased.

In Ref. 33, we computed the unidirectional anisotropy as a function of temperature

assuming a measurement time of 0.5 s. With the sweep rates considered here, a much

shorter measurement time is appropriate. In Fig. 7, we compare the loop shifts computed

from simulations as described above using sweep rates of 4 × 10−4 s to calculations like

those in Ref. 33 based on a measurement time of 10−3 s, which is approximately the time

required for a full hysteresis loop in the simulation. At low temperatures, the loop shift found

in these simulations is always lower than the loop shift that would be expected from the

unidirectional anisotropy. However, at higher temperatures the curves can cross and the loop

shifts become greater than the values expected from the averaged unidirectional anisotropy.

While this could be due to a shift in the blocking temperature resulting from different

effective measuring times, the difference clearly indicates that loop shifts and macroscopic

unidirectional anisotropies need not be the same. This becomes particularly true if the

effective measurement times are very different for the two measurements.

At low temperatures, the coercivity found in these simulations tracks the zero tempera-

ture results over a range of parameter values, as seen in Fig. 8. For larger values of r0, the

coercivity is temperature dependent down to T = 0. This result follows simply from the fact

that for these values of r0, the coupling between the antiferromagnet and the ferromagnet is

limited by the domain wall energy in the antiferromagnet, and that energy is temperature

dependent. At higher temperatures, there is a peak in the coercivity that is associated with

instabilities in the antiferromagnetic grains. The double peak structure seen particularly for

r0 = 1.0 and b = 300 is reminiscent of the behavior found by Gökemeijer and Chien.44
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The processes that give rise to high-field rotational hysteresis measured in rotational

torque experiments are related to the losses in a hysteresis loop measurement. In Fig. 8, we

compare the coercivities found in these simulations with those expected based on calculated

rotational hysteresis results as in Ref. 33, but with the measurement time of 10−3 s. At

temperatures just below the blocking temperature there are clearly contributions from the

coercivity that are due to hysteretic losses in the antiferromagnet. There are peak values that

are significantly greater than the value of the coercivity found at T = 0 due to inhomogeneous

reversal. However, as the temperature is further decreased, the coercivity decreases much

more quickly than the rotational hysteresis.

The difference between coercivity and rotational hysteresis can be understood in terms

of the critical angles as in Fig. 7 of Ref. 32 and Fig. 1 of Ref. 33. In a rotational torque

measurement, all grains go through at least one and usually two critical angles at which the

state switches to the other energy curve. In Ref. 33, it was assumed that all grains had two

such transitions. However, as discussed with respect to Fig. 1, the magnetization does not

rotate through 360◦ during a hysteresis loop measurement. It rotates through 180◦ and then

−180◦ on the reverse field sweep. Thus, there are many grains that will never go through a

critical angle for the configuration they are in during a hysteresis loop measurement. As the

temperature is lowered, the critical angles become larger and larger, and fewer and fewer

grains make hysteretic transitions that contribute to the coercivity, but they still contribute

to the rotational hysteresis.

In addition to the high-field rotational hysteresis, there are other experimental mani-

festations of instabilities in the antiferromagnet in exchange-bias systems. One of these is

an isotropic field shift found in ferromagnetic resonance measurements.23 This field shift

can be explained in terms of a rotatable anisotropy, an effective anisotropy that is fixed on

the precessional time scale, but which rotates on the much longer time scale on which the

external field is rotated.

Interestingly, the coercivity seems to track the rotatable anisotropy better than the ro-

tational hysteresis. We do not have a good explanation for this result. At low temperatures,
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when the antiferromagnetic grains behave reversibly, each grain contributes a unidirectional

anisotropy, which is distributed in both orientation and strength. At high temperatures,

where the antiferromagnetic grains switch between both states, each grain provides a local

uniaxial anisotropy to the antiferromagnet. The rotatable anisotropy is an indirect measure

of the local variations in this uniaxial anisotropy. However, test simulations using a rea-

sonable distributions of such uniaxial anisotropies give coercivities much smaller than those

found with the full model. Perhaps including higher harmonics in the anisotropy would

improve the picture, but we believe that the losses in the antiferromagnetic grains play

an important role in this regime, and these losses are not captured in a model with local

uniaxial anisotropies.

Figure 9 shows how the loop shift and coercivity depend on the ratio of coupling s

between the ferromagnet and the antiferromagnetic grains to the intergranular coupling.

This ratio has a big effect on the low-temperature coercivity, as it did in the zero-temperature

simulations, but, at higher temperatures, the effect appears to be quite small for all of the

simulations we have done. This behavior suggests that the contribution to the coercivity

from the inhomogeneity is dependent on this ratio, but the contribution due to instabilities

in the antiferromagnet is not. Since the ferromagnetic magnetization goes from saturation to

saturation, the antiferromagnetic grain gets twisted through the same angle independent of

the ratio of the coupling, and hence undergoes the same irreversible transitions. However at

low temperature, when the losses occur in the ferromagnet more than the antiferromagnet,

the coercivity depends strongly on this ratio.

The difference in behavior at high and low temperatures gives different thickness de-

pendences at high and low temperatures as shown in Fig. 10. At zero temperature, in the

quasi-static limit, the coercivity decrease like t−2FM. In the finite-sweep-rate simulations, this

behavior is obscured at large thicknesses by an increasing dependence of the coercivity on

the sweep rate. At higher temperatures, in the regime where the losses are predominately

in the antiferromagnet, the coercivity decreases like t−1FM.
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IV. SUMMARY

In this paper we have simulated magnetic reversal in polycrystalline exchange-bias bi-

layers as would be measured in an hysteresis loop. We use a model we have previously

applied to measurements made in saturated magnetic states.32,33 These simulations exhibit

two contributions to the enhanced coercivity found in exchange-bias systems, one due to

inhomogeneous reversal and the other to irreversible transitions in the antiferromagnetic

grains.

The ferromagnetic thin film is coupled to an inhomogeneous environment due to the

assumed random orientations of the easy axes of the antiferromagnetic grains. As the applied

magnetic field is reduced from a large value and the ferromagnet relaxes from its saturated

state, parts of the magnetization are twisted one way and parts the other. When the

ferromagnet ultimately reverses, much larger areas will rotate in the same direction. Thus

there are a large number of local barriers to reversal. As each of them is overcome, there

is energy lost in the ferromagnetic film. Because there are a lot of small barriers that are

sequentially overcome, the hysteresis loop becomes rounded. This reversal mechanism is

strongly dependent on the ratio of the coupling between the ferromagnetic film and the

antiferromagnetic grains to the intergranular exchange coupling in the ferromagnetic film.

As the coupling within the ferromagnetic film becomes stronger, the relative twisting in the

ferromagnetic film becomes smaller, and the coercivity decreases. This decrease leads to a

thickness dependence, Hc ∝ t−2FM. The loop shift is generally smaller than expected from the

macroscopic unidirectional anisotropy. It decreases linearly with the film thickness, but has

a small quadratic correction.

At higher temperatures, the coercivity becomes dominated by hysteretic losses occurring

in the antiferromagnetic grains. As the ferromagnetic magnetization is rotated, the state

of the antiferromagnetic grain can become unstable and switch. This irreversible switching

leads to loss and the associated coercivity. It is closely related to the losses that give

rise to the high-field rotational hysteresis that is observed in these systems. However, as

18



the temperature decreases, the contribution of these processes to coercivity becomes much

smaller than their contribution to the rotational hysteresis. The difference arises because

the magnetization rotates in opposite directions on the forward and reverse parts of the

hysteresis loop measurement. In this regime, the coercivity does not depend strongly on the

coupling within the ferromagnetic film, and so decreases with film thickness like Hc ∝ t−1FM.

Here the loop shift can be greater or less than expected from the macroscopic unidirectional

anisotropy, as both depend on the details of the measurement, particularly its time scale.
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42H. Xi and R. M. White, J. Appl. Phys. 86, 5169 (1999).

43T. Ambrose, R. L. Sommer, and C. L. Chien, Phys. Rev. B 56, 83 (1997).

44N. J. Gökemeijer and C. L. Chein, J. Appl. Phys. 85, 5516 (1999).

23



TABLES

Parameter Definition Meaning

r0
2Jint
σ0a2

√
2
πN Mean interfacial coupling energy scaled by domain wall energy.

b Na2σ0
kTN

Domain wall energy scaled by Néel temperature.

s Na2σex(0)
At Unidirectional anisotropy scaled by intergranular exchange.

T/TN Temperature scaled by Néel temperature.

m M
MS

Magnetization scaled by saturation magnetization.

h Hµ0MSt
σex(0)

Applied field scaled by unidirectional anisotropy.

TABLE I. Dimensionless parameters and variables. The domain wall energy and the unidirec-

tional anisotropy refer to the zero temperature values.
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FIGURES

FIG. 1. Spin configurations during reversal. Panels (a-d) show the direction of the ferromag-

netic magnetization as seen from above. Each arrow is associated with a separate grain. Grains

with magnetization tilted slightly in the negative y-direction are highlighted in gray. Each con-

figuration is connected to the point where it occurred on the hysteresis loop, shown in terms of

scaled variables, see Eq. (13). h = −1 is the loop shift expected from the size of the unidirectional

anisotropy. To the left in the figure are two arrows giving the positive x- and y-directions.

FIG. 2. Angular dependence of coercivity and loop shift. Each panel shows the coercivity hc

and loop shift hs as a function of the angle φH at which the magnetic field is applied relative to the

easy axis direction of the unidirectional anisotropy. The insets in each panel show the hysteresis

loop at φH = 0; the y-axis is located at h = 0 in all cases. Panel (a) gives the results for coherent

rotation with a uniaxial anisotropy. Panels (b-e) give results for the present model for different

values of r0 Eq. (1), and of the fraction f of grains contributing to the biased state. All fields and

magnetizations are scaled as in Eq. (13).

FIG. 3. Dependence of coercivity and loop shift on intergranular exchange coupling. The scaled

field values, as in Eq. (13), are plotted against the ratio of the coupling to the antiferromagnet to the

coupling to neighboring ferromagnetic grains, as in Eq. (4), for different values of the parameter r0,

Eq. (1). The points with error bars are the mean values of 20 different configurations for r0 = 1.0.

The error bars give the widths of the distributions of values, not the uncertainty in the mean value.

That uncertainty is smaller by a factor of
√
19. Rather the error bars represent single standard

deviation uncertainties for points on the curves. Each point on the curves has only been calculated

once. Different configurations have been used for each point.

FIG. 4. Dependence of coercivity on thickness. Using the parameter values in Eq. (11) and

the value of the antiferromagnetic domain wall energy σ0=1.0 mJ/m2, the results from Fig. 3 are

converted into the coercive field as a function of the thickness of the ferromagnetic film. Changing

the value of the antiferromagnetic domain wall energy simply translates the curves horizontally.
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FIG. 5. Lattice-size convergence. The top panel shows the hysteresis loops calculated for 16

different configurations of 128× 128 lattices. The bottom panel shows the average hysteresis loops

for 4 256×256 lattices, 16 128×128 lattices, 64 64×64 lattices, and 256 32×32 lattices. Averages

are over the same total number of spins in each case.

FIG. 6. Sweep-rate dependence. The scaled loop shift, hs and coercivity hc as a function of

temperature are calculated for several different sweep rates. The curves are labeled by the sweep

rate in 107 Am−1s−1 based of the values of parameters in Eq. (11). The arrows to the left of the

y-axis give the values calculated at T = 0 in the quasi-static limit.

FIG. 7. Loop shift and unidirectional anisotropy. For different parameter values given to the

top and right, the scaled loop shift (symbols and solid curves) and the loop shift expected from

the unidirectional anisotropy (dotted curve) are plotted as a function of temperature. The arrows

to the left of the y-axis give the loop shift calculated at T = 0 in the quasi-static limit.

FIG. 8. Coercivity, rotatable anisotropy, and rotational hysteresis. For different parameter

values given to the top and right, the scaled coercivity (symbols and solid curves, the scaled

rotatable anisotropy (dotted curve), and the scaled rotational hysteresis (dashed curve) are plotted

as a function of temperature. The arrows to the left of the y-axis give the coercivity calculated at

T = 0 in the quasi-static limit.

FIG. 9. Loop shift and coercivity. The scaled loop shift, hs and coercivity hc as a function

of temperature are calculated for two different values of s, Eq. (4). The arrows to the left of the

y-axis give the values calculated at T = 0 in the quasi-static limit.

FIG. 10. Coercivity as a function of thickness. Using the parameter values in Eq. (11) and

the value of the antiferromagnetic domain wall energy σ0=1.0 mJ/m2, the results from Fig. 9 are

converted into the coercive field as a function of the thickness of the ferromagnetic film for several

temperatures. Changing the value of the antiferromagnetic domain wall energy simply translates

the curves horizontally.
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